Convergence and stability of the split-step backward Euler method for linear stochastic delay integro-differential equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence and stability of the semi-implicit Euler method for linear stochastic delay integro-differential equations

Delay integro-differential equations are very important in biology, medicine and many other fields. If we take random noise into account, we can obtain many stochastic delay integro-differential equations (SDIDEs). As a special case of stochastic functional differential equations (SFDEs), the fundamental theory of existence and uniqueness of the solution of SDIDEs can be regarded similarly to t...

متن کامل

Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations

The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs). It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order [Formula: see text] to SLSDDEs. On the one hand, the classical sta...

متن کامل

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

Nonlinear Stability and Convergence of Two-Step Runge-Kutta Methods for Volterra Delay Integro-Differential Equations

and Applied Analysis 3 The class of Runge-Kutta methods with CQ formula has been applied to delay-integro-differential equations by many authors (c.f. [18, 19]). For the CQ formula (9), we usually adopt the repeated trapezoidal rule, the repeated Simpson’s rule, or the repeated Newton-cotes rule, and so forth, denote η = max{?̃? 0 , ?̃? 1 , . . . , ?̃? m }. It should be pointed out that the adopte...

متن کامل

Convergence and stability of balanced methods for stochastic delay integro-differential equations

This paper deals with a family of balanced implicit methods for the stochastic delay integro-differential equations. It is shown that the balanced methods, which own the implicit iterative scheme in the diffusion term, give strong convergence rate of at least 1/2. It proves that the mean-square stability for the stochastic delay integro-differential equations is inherited by the strong balanced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical and Computer Modelling

سال: 2010

ISSN: 0895-7177

DOI: 10.1016/j.mcm.2009.11.020